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Abstract
An ideal gas of relativistic bosons trapped in a D-dimensional power-
law potential is explored, where the possibility of particle–antiparticle pair
production is taken into account. Expressions for several important parameters,
such as the critical temperature of Bose–Einstein condensation (BEC), ground-
state fraction and heat capacity, are analytically derived and used to discuss the
relevant properties of the system. An important parameter χ is introduced to
mark the extent of the relativistic effects on the characteristics of BEC. It is
found that the correction of the critical temperature due to the relativistic effects
is considerable for the system with a large parameter χ . It is more important
to show that the pair production may lead to several novel characteristics for a
relativistic Bose gas, such as the high temperature BEC, the rapid increase of
the heat capacity at high temperatures and the disappearance of the anomaly of
the heat capacity at the critical temperature in the ultrarelativistic limit.

PACS numbers: 05.30.Jp, 03.75.Hh, 03.30.+p

1. Introduction

In most works dealing with the behavior of degenerate Bose gases, nonrelativistic energy
dispersion is adopted since the relativistic effects are often negligible. However, there are
some systems in the universe for which the relativistic effects are considerable. For example,
in the final stage of heavy ion collisions [1, 2], a large number of high-energy bosonic
hadrons produced in the process can be approximately described as an ideal gas of bosons,
and the energy dispersion should be treated relativistically for low-mass particles whose
kinetic energies are comparable with their rest energies, i.e., kBT = O(mc2), where kB is the
Boltzmann constant, T is the temperature, m is the rest mass of a particle and c is the velocity
of light.
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The properties of relativistic Bose gases have been investigated by several authors [3–14].
The early works mainly concentrated on the corrections to the properties of Bose gases due
to the relativistic effects [3–6], where the total number of particles N was assumed to be a
conserved quantity. More complete treatment of relativistic Bose systems was given by using
the techniques of quantum field theory, in which the possibility of particle–antiparticle pair
production was considered and a more general conserved quantity Q = N − N̄ , which may
be generically referred to as the ‘charge’ number [7], was introduced in place of N [7–14],
where N̄ is the number of antiparticles.

In [15] the authors of this paper studied the Bose–Einstein condensation of a trapped
relativistic Bose gas, in which we mainly concentrated on the corrections resulting from
the relativistic energy spectrum and did not consider the effects of particle–antiparticle pair
production. At high temperatures such that kBT = O(mc2), the probability of pair production
cannot be ignored and the inclusion of pair production becomes necessary. The present paper
will continue the work in [15] and focus on how pair production affects the behavior of a
relativistic Bose gas in the presence of an external potential.

2. General expressions of the important thermodynamic quantities

We consider an ideal relativistic Bose gas trapped in a D-dimensional generic power-law
potential with single-particle energy

ε(p, x1, x2, . . . , xD) =
√

p2c2 + m2c4 +
D∑

k=1

εk

∣∣∣∣ xk

Lk

∣∣∣∣
tk

, (1)

where p and xk are, respectively, the momentum and kth component of the coordinate of a
particle, tk , εk and Lk (k = 1, 2, . . . , D) are all positive constants that mark the shape and
strength of the external potential. The power-law potential adopted here represents a class of
traps to restrict the particles and may take different forms if the different parameters tk , εk and
Lk are chosen. For example, it is reduced to a rigid confining box if tk → ∞ and a ‘harmonic’
trap if tk = 2.

According to the quantum field theory, the total number of ‘charges’ for the ideal Bose
system with pair production is given by [7]

Q = N − N̄ =
∑

ε

{
1

exp[β(ε − µ)] − 1
− (µ → −µ)

}
, (2)

where β = 1/kBT and µ is the chemical potential of the system. It should be noted that
the numbers of the particles and antiparticles in any state should be positive. This requires
that the absolute value of the chemical potential should not exceed the lowest energy of the
single-particle states, i.e., |µ| � mc2. Moreover, if it is further assumed that at the initial time
of the system, Q > 0, one has 0 < µ � mc2.

For the system satisfying the thermodynamic limit [16], the sum over the states may be
replaced by the integral over the phase space. According to equations (1) and (2), the total
number of ‘charges’ can be expressed as

Q = Q0 +
1

hD

{∫ ∏D
k=1 dxk dpk

exp
[
β(
√

p2c2 + m2c4 +
∑D

k=1 εi |xk/Lk|tk ) − µ
]− 1

− (µ → −µ)

}

= Q0 +
�

λD
nr

(
8u

π

)1/2 ∞∑
j=1

sinh(jβµ)

jD′+η−1
KD′(ju), (3)
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where u = βmc2, D′ = (D + 1)/2, η = ∑D
k=1 1/tk , h is the Planck constant, λnr =

h/
√

2πmkBT is the nonrelativistic thermal wavelength,

� =
D∏

k=1

(2Lk)�(1/tk + 1)

(βεk)1/tk
(4)

is the ‘pseudovolume’ introduced in [17],

Kν(x) =
√

π

�(ν + 1/2)

(x

2

)ν
∫ ∞

0
exp(−x cosh θ) sinh2ν θ dθ (5)

is the modified Bessel function, and

Q0 = 1

exp[(u − βµ)] − 1
− (µ → −µ) (6)

is the ground-state occupation number of ‘charges’.
When µ → mc2 and the ground-state occupation number of ‘charges’ is still

macroscopically negligible, i.e., Q0 = 0, BEC begins to occur in the system. According
to equation (3), the critical temperature TC is determined by

Q = �C

λD
C, nr

(
8uC

π

)1/2 ∞∑
j=1

sinh(juC)

jD′+η−1
KD′(juC), (7)

where λC, nr = h/
√

2πmkBTC , uC = βCmc2, βC = 1/kBTC , and

�C =
D∏

k=1

(2Lk)�(1/tk + 1)

(βCεk)1/tk
. (8)

From equations (3) and (7), one can obtain the ground-state fraction of ‘charges’ at T < TC as

Q0

Q
= 1 −

(
T

TC

)D′+η−1
∑∞

j=1 sinh(ju)KD′(ju)/jD′+η−1∑∞
j=1 sinh(juC)KD′(juC)/jD′+η−1

. (9)

Similarly, the total energy of the system is given by

E =
∑

ε

{
ε

exp[β(ε − µ)] − 1
+ (µ → −µ)

}
. (10)

Under the thermodynamic limit, equation (10) can be expressed as

E = E0 +
�kBT

λD
nr

(
8u

π

)1/2 ∞∑
j=1

cosh(jβµ)

jD′+η
[(η − 1)KD′(ju) + juKD′+1(ju)], (11)

where

E0 = mc2

exp[(u − βµ)] − 1
+ (µ → −µ) ≈ mc2

exp[(u − βµ)] − 1
− (µ → −µ) = Q0mc2,

(12)

because the term (µ → −µ) in the above equation is macroscopically negligible.
According to equations (3), (11) and (12), one can further calculate the heat capacity at

the given number of ‘charges’ and external potential. When T > TC , Q0 = 0, E0 = 0, and
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the heat capacity can be derived as

CT >TC
= dE

dT
=
(

∂E

∂T

)
µ

+

(
∂E

∂µ

)
T

dµ

dT

= �kB

λD
nr

(
8u

π

)1/2
⎛
⎝ ∞∑

j=1

cosh(jβµ)

jD′+η
[η(η − 1)KD′(ju) + (2η − 3)juKD′+1(ju)

+ j 2u2KD′+2(ju)] −
⎧⎨
⎩

∞∑
j=1

sinh(jβµ)

jD′+η−1
[(η − 1)KD′(ju) + juKD′+1(ju)]

⎫⎬
⎭

2/

∞∑
j=1

cosh(jβµ)

jD′+η−2
KD′(ju)

⎞
⎠ , (13)

where the property of the modified Bessel function

x
dKν(x)

dx
= νKν(x) − xKν+1(x) (14)

is employed. When T � TC , µ = mc2 and one can obtain

CT �TC
= dE

dT

= �kB

λD
nr

(
8u

π

)1/2
⎛
⎝ ∞∑

j=1

cosh(ju)

jD′+η
{[η(η − 1) + j 2u2]KD′(ju) + (2η − 3)juKD′+1(ju)

+ j 2u2KD′+2(ju)} − 2u

∞∑
j=1

sinh(ju)

jD′+η−1
[(η − 1)KD′(ju) + juKD′+1(ju)]

⎞
⎠ . (15)

By using equations (13) and (15), the jump of the heat capacity between T → T −
C and T → T +

C

is found to be

�C = CT →T −
C

− CT →T +
C

= �CkB

λD
C, nr

(
8uC

π

)1/2
⎧⎨
⎩

∞∑
j=1

sinh(juC)

jD′+η−1
[(η − 1)KD′(juC) + juCKD′+1(juC)]

−uC

∞∑
j=1

cosh(juC)

jD′+η−2
KD′(juC)

⎫⎬
⎭

2 / ∞∑
j=1

cosh(juC)

jD′+η−2
KD′(juC). (16)

Because of the general form of the external potential adopted, the expressions derived
above can be used to explore the properties of the relativistic Bose gases trapped in different
external potentials corresponding to different choices of the parameters tk , εk and Lk .

If tk → ∞ is set, the above expressions represent the thermodynamic properties of
a relativistic Bose gas confined in a D-dimensional rigid box. For example, according to
equations (4) and (7), the critical temperature in this case is determined by

ρλD
C, nr =

(
8uC

π

)1/2 ∞∑
j=1

sinh(juC)

jD/2−1/2
KD′(juC), (17)

where ρ = Q/V is the density of ‘charges’ and V = ∏D
k=1 (2Lk) is the volume of the D-

dimensional box. Equation (17) is just the same as the result obtained in [10] and coincides

4
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Figure 1. The scaled critical temperature kBTC/mc2 as a function of the parameter χ . Solid lines
with solid and empty circles represent the results of the relativistic Bose gas with and without pair
production, respectively. Dashed line represents the result of the nonrelativistic approximation.

with the result given in a recently published paper [14] as long as the necessary mathematical
transformation is done.

If tk = 2 and εk

/
L

tk
k = γk/2 (γk is a positive constant) are chosen, the above expressions

can be used to discuss the properties of a relativistic Bose gas trapped in a D-dimensional
‘harmonic potential’, which have been widely investigated under the nonrelativistic limit
[18]. For example, it is found from equations (4) and (7) that the critical temperature is now
determined by

Q

(
h̄�

kBTC

)D

=
(

8uC

π

)1/2 ∞∑
j=1

sinh(juC)

jD−1/2
KD′(juC), (18)

where � = (∏D
k=1 γ

1/2
k

)1/D
/m1/2.

3. Discussion

It is seen from equation (7) that the critical temperature is dependent on the number of ‘charges’
Q, the parameters of external potential tk , εk and Lk and the rest mass of a particle m. If a
parameter related to these quantities

χ = kBTC, nr

mc2
= 1

mc2

[
QhD

ζ(η + D/2)(2πm)D/2

D∏
i=1

ε
1/tk
k

(2Lk)�(1/tk + 1)

]1/(η+D/2)

, (19)

is introduced, equation (7) can be expressed as

χη+D/2 =
(

8

π

)1/2
u

η+D/2−1/2
C

ζ(η + D/2)

∞∑
j=1

sinh(juC)

jD′+η−1
KD′(juC), (20)

where TC, nr is the nonrelativistic critical temperature of BEC [19] and ζ(x) = ∑∞
j=1 1/jx .

Figure 1 shows the scaled critical temperature kBTC/mc2 as a function of the parameter χ in
the case of D = 3 and η = 3, which may correspond to the system trapped in a three-dmensional
‘harmonic potential’. The result is compared with that obtained without considering the pair
production and that obtained under the nonrelativistic approximation. It is shown that both
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Figure 2. The scaled heat capacity C/QkB as a function of kBT /mc2 for different values of the
parameter χ : (a) χ = 0.1, (b) χ = 0.5 and (c) χ = 2.0. Solid lines with solid and empty circles
represent the results of the relativistic Bose gas with and without pair production, respectively. The
dashed line represents the results of the nonrelativistic approximation.

the relativistic effects and the influences of the pair production cannot be ignored when the
parameter χ is large. It is also observed that for a large parameter χ , the pair production
considerably increases the critical temperature of BEC. In particularly, in the case of χ � 1,

which implies uC � 1, by using the approximation sinh(x)
x→0−−−−→ x and

Kν(x)
x→0−−−−→ �(ν)

2

(
2

x

)ν

, (21)

one can derive from equation (20) that

TC = mc2

kB

[
π1/2ζ(η + D/2)χη+D/2

2D/2+1�(D/2 + 1/2)ζ(η + D − 1)

]1/(η+D−1)

. (22)

Equation (22) shows that BEC may occur at a very high critical temperature (kBTC � mc2)
for the system with χ � 1. The analogous phenomenon has been studied for an ideal Bose
gas confined in a rigid box [7, 10, 13, 14], where the parameter χ is reduced to

χ = (ρ1/Dλc)
2

2π [ζ(D/2)]2/D
, (23)

6
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Figure 3. The jump of the heat capacity at the critical point �C/QkB as a function of the
parameter χ . Solid lines with solid and empty circles represent the results of the relativistic Bose
gases with and without pair production, respectively. The dashed line represents the result of the
nonrelativistic approximation.

and λc = h/mc is the ‘Compton wave length’. The condition χ � 1 can now be written
as ρ1/Dλc � 1, which corresponds to a system of high density of particles and/or small rest
mass of a particle. The power-law potential adopted here plays a role similar to the rigid box
confining the Bose gas and the strong potential, which will lead to the high density of particles
around the center of the potential, corresponds to the small volume of the box.

Using equations (3), (13) and (15), one can explore the dependence of the heat capacity
on the temperature, as shown in figure 2, where (a), (b) and (c) correspond to the cases of χ =
0.1, 0.5 and 2.0, respectively. It is interesting to note that the pair production greatly alters the
high-temperature behavior of the heat capacity. For example, the heat capacity comes close
to a constant at high temperatures for the Bose gas without pair production, while it increases
rapidly at high temperatures for the system with pair production. The result can be explained
as follows: according to equation (10), the contributions of particles and antiparticles to the
total energy are both positive. The production of large numbers of particle–antiparticle pairs
at high temperatures will significantly increase the total energy, and hence increase the heat
capacity of the system. Comparing the curves for χ = 0.1, 0.5 and 2.0, one can find that
the dependence of the heat capacity on the temperature is obviously different for the different
parameters χ when the pair production is taken into account. In the case of a small χ (e.g.
χ = 0.1 and 0.5), CT >TC

is not a monotonic function of temperature. It first decreases
with temperature and reaches a minimal value. It rapidly increases with temperature at high
temperatures. In the case of a large χ (e.g. χ = 2.0), however, CT >TC

increases monotonously
with temperatures in the entire region of T > TC .

Figure 3 gives the curves of the jump of the heat capacity varying with the parameter
χ . It is found that the pair production significantly reduces the gap of the heat capacity at
the critical temperature for the systems with a large parameter χ . In the case of χ � 1, i.e.,

uC � 1, by using sinh(x)
x→0−−−−→ x, cosh(x)

x→0−−−−→ 1 and equation (21), equation (16) can be
expressed as

�C = CT →T −
C

− CT →T +
C

= QkB(η + D − 1)2uC. (24)

Equation (24) shows that �C → 0 when χ � 1, i.e., uC � 1. This indicates that the anomaly
of the heat capacity at the critical temperature is completely removed in the ultrarelativistic
limit when the particles–antiparticle pair production is taken into account.
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4. Conclusions

We have studied the properties of a relativistic Bose gas in an external potential, in which
the effects of particle–antiparticle pair production are taken into account. Some important
results have been obtained as follows. (1) The relativistic effects on the characteristics of
BEC are considerable for the Bose system with a large parameter χ . (2) The pair production
increases the critical temperature and BEC may occur at high temperatures (kBTC � mc2)
for the system with the parameter χ � 1. (3) The pair production significantly reduces the
jump of the heat capacity at the critical temperature and the anomaly of the heat capacity
at the critical temperature is completely removed in the ultrarelativistic limit. (4) The pair
production results in the rapid increase of the heat capacity at high temperatures.

Because of the relativistic energy dispersion and general form of the external potential
adopted, the results obtained in the present paper may include many significant results in the
literature.
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